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ABSTRACT 

Cyclin D dependent kinases namely CDK4 and CDK6 regulate entry into S phase of the cell 

cycle. These are emerging validated targets for anti-cancer drug discovery. A QSAR study 

has been carried out on the 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives, which 

were reported as highly potent and selective inhibitors of CDK4 and CDK6, in terms of 

Dragon descriptors with the aim to establish the quantitative relationships between the 

reported activities and molecular descriptors unfolding the substitutional changes. In deriving 

QSAR models, combinatorial protocol in multiple linear regression (CP-MLR) approach was 

used. These models have accounted for nearly 79 and 83% variance in the CDK4 and CDK6 

observed activities, respectively. The statistically validated QSAR models and the descriptors 

emerged in these models provided rationales to explain the CDK4 and CDK6 inhibitory 

activities of these congeners. PLS analysis has also corroborated the dominance of CP-MLR 

identified descriptors. Applicability domain analysis revealed that the suggested model 

matches the high quality parameters with good fitting power and the capability of assessing 

external data and all of the compounds was within the applicability domain of the proposed 

model and were evaluated correctly. 

Keywords: QSAR, CDK4 and CDK6 inhibitors, Combinatorial protocol in multiple linear 

regression (CP-MLR) analysis, PLS, Dragon descriptors, 4-Thiazol-N-(pyridin-2-yl) 

pyrimidin-2-amines.   
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INTRODUCTION 

The ordered sequence of events in cell cycle not only leads to the transition from quiescence 

or cytokinesis to cell proliferation but also ensures genome stability
1
. The four sequential 

phases are (i) S phase (DNA synthesis occurs), (ii) M phase (cell divides into daughter cells), 

(iii) G1 phase after mitosis and before S phase (cellular biosynthetic events take place at high 

rate and cells grow in size) (iv) G2 phase occurring between S and M phases (during which 

cells prepare for mitosis). Cells make a decision to enter S phase or remain quiescent utilizing 

signaling pathways which link extracellular cues (e.g. growth factors) to G1 phase of the cell 

cycle
2
. The retinoblastoma tumor suppressor proteins (Rbs) regulate the progression through 

G1 phase, repressing the activity of E2 promoter binding factor (E2F) transcription factors 

that are functionally requisite for transition from G1 to S phase. The transcription of genes 

encoding necessary proteins for DNA replication (such as cyclin A and cyclin E) is promoted 

by release of E2F transcription factors on phosphorylation of Rb by G1-phase CDKs. 

In mammalian cells, CDK4 and CDK6 are the primary kinases which phosphorylate Rb 

proteins in G1 phase
3
. The disruption of CDK4/6-Rb-E2F pathway in 90% of cancers was 

shown in earlier studies
4-7

. Moreover, it is established in genetic studies that CDK4/6 are not 

essential for the mitotic cell cycle. The evidences in favor of this are the facts that mice 

lacking CDK4/6 are viable, and the proliferation of specific cell types was only affected by 

the inactivation of the CDK4/6 genes
8,9

 rendering CDK4/6 as rational targets to develop 

small-molecules to intervene therapeutically in cancers
10

. The approval of first CDK4/6 

inhibitor, palbociclib, to treat metastatic breast cancer by FDA revived the area of selective 

CDK inhibitors
11

. Now a days, researches on CDK4/6 inhibitors got recognition in answering 

complex biological questions
12,13

.  

The selectivity of kinases is still unconquered due to the binding of most of the CDK 

inhibitors to the highly conserved ATP binding site
14,15

. Not only the drug safety be impaired 

by off-targets but differential cellular potencies and dissimilar clinical responses also. 

Therefore, new pharmacophores might be with affordable desired kinase selectivity profiles 

to offer minimized undesirable side effects. The evolutionary conservation of the ATP-

binding site is a challenging task in discovering highly selective small-molecule ATP-

antagonistic CDK inhibitors
10,16-18

. The 2-anilino-4-(thiazol-5-yl)pyrimidine pharmacophore 

was identified as both potent and selective ATP competitive CDK2 or CDK9 inhibitors
19-21

. 

Analogues based on this pharmacophore were synthesized and screened against a wide panel 

of CDKs, and several of these were found with modest CDK4 inhibitory potency
19-21

. A 

novel series of compounds based on the structural modifications to the 2-anilino-4-(thiazol-5-

yl)pyrimidine pharmacophore as CDK4/6 inhibitors was synthesized and evaluated by 
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Tadesse et al.
22

. The aim of present communication is to establish the quantitative 

relationships between the reported activities and molecular descriptors unfolding the 

substitutional changes in titled compounds. 

MATERIALS AND METHOD 

Data-set 

For present work the reported thirty seven 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amines 

have been considered as the data set
22

. The structural variations are mentioned in Table 1. 

These derivatives were evaluated for their inhibition of CDK4 and CDK6. Apparent 

inhibition constants (Ki) were calculated using the half maximal inhibition (IC50) and the 

appropriate Km(ATP) of each kinase
22

. Both the inhibition activities have also been reported 

in Table 1. The same is expressed as pKi on a molar basis and considered as the dependent 

variable for the present quantitative analysis. In the dataset, the initial assessment of activity 

with all descriptors has suggested the compounds 1 and 15 as potential outliers. An outlier to 

a QSAR can indicate the limits of applicability of QSAR models. These outliers are not part 

of the data set. The data set was sub-divided into training set to develop models and test set to 

validate the models externally. The test set compounds which were selected using an in-house 

written randomization program, are also mentioned in Table 1. 

Table 1: Structural variations and observed CDK4 and CDK6 inhibition activities of 4-

thiazol-N-(pyridin-2-yl) pyrimidin-2-amines. 

 

 

 

  

 

 

 

Cpd. R1 R2 R3 R4 R5 CDK Inhibition  
a
 

4D1
b
 6D3

b
 

1 c-Pent H  Me  H  

N

N
H

 

0.001 0.034 

2 c-Pent H Me  H  

N
N H

 

0.001 0.008 

3
c
 c-Pent H Me  H  

N

N
Me

 

0.002 0.009 

4 c-Pent H Me  H  

N

N
Et

 

0.002 0.011 

N

R5

N
H

N

N

S

N

R3

N

R1

R2

R4
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5 c-Pent H Me  H  

N

N

O

Me

 

0.006 0.093 

6
c
 c-Pent H Me  H  

N

O

 

0.004 0.030 

7 c-Pent H Me  H  

N

NH2

 

0.003 0.133 

8 c-Pent H Me  H  

N
 

0.070 0.257 

9 c-Pent  H Me  H  

N

N
S

O

Me
O

 

0.007 0.055 

10 c-Pent  H Me  H  H 0.570 - 

11 c-Pent Me  Me  H  

N

N
H

 

0.002 0.010 

12
c
 c-Pent Me  Me  H  

N

N
Me

 

0.002 0.010 

13 c-Pent Me  Me  H  

N

N

O

Me

 

0.010 0.031 

14
c
 c-Pent c-Pent Me  H  

N

N
H

 

0.071 0.539 

15 Ph H  Me  H  

N

N
H

 

0.005 0.066 

16 Ph H  Me  H  

N

N
Me

 

0.019 0.485 

17 Ph Me  Me  H  

N

N
Me

 

0.026 0.100 

18 i-Pr H  Me  H  

N

N
H

 

0.005 0.011 

19
c
 i-Pr H  Me  H  

N
N H

 

0.016 0.028 

20 i-Pr H  Me  H  

N

N
Me

 

0.003 0.015 

21 i-Pr H  Me  H  

N

N

O

Me

 

0.021 0.105 

22 i-Pr H  Me  H  

N

O

 

0.041 0.082 

23 c-Pent  H  CF3 H  

N

N
H

 

0.008 0.002 
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24 c-Pent H  CF3 H  

N

N
Me

 

0.001 0.003 

25 c-Pent H  CF3 H  

N

N

O

Me

 

0.004 0.006 

26 c-Pent H  CF3 H  

N

O

 

0.008 0.011 

27 c-Pent H  CF3 H  

N

N

O

H

 

0.011 0.007 

28 c-Pent H  Me  H  N

N
Et 

0.006 0.009 

29
c
 c-Pent H  Me  F N

N
Et 

0.003 0.014 

30 c-Pent H  Me  F 

N

N
H

 

0.003 0.007 

31
c
 c-Pent H  Me  F 

N
N H

 

0.014 0.010 

32
c
 c-Pent H  Me  F 

N

N
Me

 

0.001 0.003 

33 c-Pent H  Me  F 

N

N
Et

 

0.002 0.006 

34
c
 c-Pent H  Me  F 

N

N

O

Me

 

0.034 0.023 

35
c
 c-Pent H  Me  F 

N

O

 

0.006 0.020 

36 c-Pent H  Me  F 

N

N
S

O

Me
O

 

0.039 0.101 

37 c-Pent H  Me  F 

N

N

Me

Me

 

0.001 0.031 

a
Reference [22]; 

b
4D1 and 6D3represent CDK4-cyclin D1 and CDK6-cyclin D3, 

respectively;  
c 
compound included in test set.  

Molecular descriptors  

The structures of the compounds (Table 1), under study, have been drawn in 2D ChemDraw
23

 

and were converted into 3D objects using the default conversion procedure implemented in 

the CS Chem3D Ultra. The generated 3D-structures of the compounds were subjected to 

energy minimization in the MOPAC module, using the AM1 procedure for closed shell 

systems, implemented in the CS Chem3D Ultra. This will ensure a well defined conformer 
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relationship across the compounds of the study. All these energy minimized structures of 

respective compounds have been ported to DRAGON software
24

 for computing the 

descriptors corresponding to 0D-, 1D-, and 2D-classes.  

Development and validation of model 

The combinatorial protocol in multiple linear regression (CP-MLR)
25-29

 and partial least 

squares (PLS)
30-32

 procedures were used in the present work for developing QSAR models. 

The CP-MLR is a “filter”-based variable selection procedure, which employs a combinatorial 

strategy with MLR to result in selected subset regressions for the extraction of diverse 

structure–activity models, each having unique combination of descriptors from the generated 

dataset of the compounds under study. The embedded filters make the variable selection 

process efficient and lead to unique solution. Fear of “chance correlations” exists where large 

descriptor pools are used in multilinear QSAR/QSPR studies. Furthermore, in order to 

discover any chance correlations associated with the models recognized in CP-MLR, each 

cross-validated model has been put to a randomization test
33,34

 by repeated randomization of 

the activity to ascertain the chance correlations, if any, associated with them. For this, every 

model has been subjected to 100 simulation runs with scrambled activity. The scrambled 

activity models with regression statistics better than or equal to that of the original activity 

model have been counted, to express the percent chance correlation of the model under 

scrutiny. 

Validation of the derived model is necessary to test its prediction and generalization within 

the study domain. For each model, derived by involving n data points, a number of statistical 

parameters such as r (the multiple correlation coefficient), s (the standard deviation), F (the F 

ratio between the variances of calculated and observed activities), and Q
2

LOO (the cross-

validated index from leave-one-out procedure) have been obtained to access its overall 

statistical significance. In case of internal validation, Q
2

LOO is used as a criterion of both 

robustness and predictive ability of the model. A value greater than 0.5 of Q
2
 index suggests a 

statistically significant model. The predictive power of derived model is based on test set 

compounds. The model obtained from training set has a reliable predictive power if the value 

of the r
2

Test (the squared correlation coefficient between the observed and predicted values of 

compounds from test set) is greater than 0.5. 

Applicability Domain 

The utility of a QSAR model is based on its accurate prediction ability for new compounds. 

A model is valid only within its training domain and new compounds must be assessed as 

belonging to the domain before the model is applied. The applicability domain is assessed by 

the leverage values for each compound
35

. The Williams plot (the plot of standardized 

residuals versus leverage values, h) can then be used for an immediate and simple graphical 
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detection of both the response outliers (Y outliers) and structurally influential chemicals (X 

outliers) in the model. In this plot, the applicability domain is established inside a squared 

area within ±x(s.d.) and a leverage threshold h
*
. The threshold h

*
 is generally fixed at 3(k + 

1)/n (n is the number of training-set compounds and k is the number of model parameters) 

whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a high 

leverage value (h > h
*
). On the other hand, when the leverage value of a compound is lower 

than the threshold value, the probability of accordance between predicted and observed 

values is as high as that for the training-set compounds. 

RESULTS AND DISCUSSION 

QSAR results 

For the compounds in Table 1, a total number of 491 descriptors belonging to 0D- to 2D- 

classes of DRAGON have been computed. Prior to model development procedure, all those 

descriptors that are inter-correlated beyond 0.90 and showing a correlation of less than 0.1 

with the biological endpoints (descriptor versus activity, r < 0.1) were excluded. This 

procedure has reduced the total descriptors from 491 to 84 as relevant ones to explain the 

biological actions of titled compounds and these were subjected to CP-MLR analysis with 

default “filters” set in it. The descriptors have been scaled between the intervals 0 to 1 to 

ensure that a descriptor will not dominate simply because it has larger or smaller pre-scaled 

value compared to the other descriptors. In this way, the scaled descriptors would have equal 

potential to influence the QSAR models.  

In multi-descriptor class environment, exploring for best model equation(s) along the 

descriptor class provides an opportunity to unravel the phenomenon under investigation. In 

other words, the concepts embedded in the descriptor classes relate the biological actions 

revealed by the compounds. 

The 35 compounds were divided into training-set and test-set. Ten compounds (nearly 30% 

of total population) have been selected for test-set. The identified test-set was then used for 

external validation of models derived from remaining twenty five compounds in the training-

set. The squared correlation coefficient between the observed and predicted values of 

compounds from test-set, r
2

Test, was calculated to explain the fraction of explained variance in 

the test-set which is not part of regression/model derivation. It is a measure of goodness of 

the derived model equation. A high r
2

Test value is always good. But considering the stringency 

of test-set procedures, often r
2

Test values in the range of 0.5 to 0.6 are regarded as logical 

models. Following the strategy to explore only predictive models, CP-MLR resulted into 01 

model in three descriptors shown below 

pKi= 8.171 –1.784(0.540)CIC3 +2.143(0.407)nNR2 –1.801(0.345)ARR 
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n = 25, r = 0.828, s = 0.388, F = 15.314, Q
2

LOO = 0.576, Q
2

L5O = 0.537 

r
2

Test = 0.440, FIT = 1.351, LOF = 0.220, AIC = 0.208            

(1) 

where n, r, s and F represent respectively the number of data points, the multiple correlation 

coefficient, the standard deviation and the F-ratio between the variances of calculated and 

observed activities. In above regression equations, the values given in the parentheses are the 

standard errors of the regression coefficients. The signs of the regression coefficients suggest 

the direction of influence of explanatory variables in the models. The positive regression 

coefficient associated to a descriptor will augment the activity profile of a compound while 

the negative coefficient will cause detrimental effect to it. In the randomization study (100 

simulations per model), the identified model has not shown any chance correlation. 

The descriptors CIC3, nNR2 and ARR participated in above model are topological, 

functional and empirical class descriptors, respectively. The negative influence of descriptors 

CIC3 and ARR on the activity suggested that lower values of complimentary information 

content of 3
rd

 order neighborhood symmetry (descriptor CIC3) and aromatic ratio (descriptor 

ARR) would be beneficiary to the activity. The positive contribution of other participated 

descriptor nNR2 suggested that higher number of tertiary aliphatic amines in a molecular 

structure would be favorable to the activity. This model in three descriptors could account for 

nearly 69% variance in the observed activities. Considering the number of observations 

models up to four descriptors have been explored. A total number of 12 models in four 

descriptors (sharing 20 descriptors) for the CDK4 inhibitory activity were obtained. All these 

20 descriptors along with their brief meaning, average regression coefficients, and total 

incidence are listed in Table 2, which will serve as a measure of their estimate across these 

models. 

Table 2: Identified descriptors
a 

along with their class, physical meaning, average 

regression coefficient and incidence
b
 

Descriptor class Descriptor (physical meaning), avgregcoeff (incidence) 

Constitutional descriptors 

(CONST): 

Ss(sum of Kier-Hall electrotopological states), -1.029(1);  

Mv (mean atomic volume scaled on Carbon atom), -

1.907(1); Mp (mean atomic polarizability scaled on Carbon 

atom), -1.805(1); nBM (number of multiple bonds), -

1.853(1); nCIC (number of rings), 2.015(1); RBN (number 

of rotatable bonds), -1.033(1);  

Topological descriptors (TOPO): SPI (superpendentic index), -0.647(2); IDDE (mean 

information content on the distance degree equality), -

0.992(5); IC2 (information content index of 2
nd

 order 

neighborhood symmetry), 0.748(1); SIC2 (structural 

information content of 2
nd

 order neighborhood symmetry 

),0.903(1); CIC3 (complimentary information content of 3
rd

 

order neighborhood symmetry ), -1-595(2); 
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BCUT BEHv1 (highest eigenvalue n.1 of Burden matrix/ weighted 

by atomic van der Waals volumes), -14-223(1); BEHv3 

(highest eigenvalue n.3 of Burden matrix/ weighted by 

atomic van der Waals volumes ), 0.858(1); BELv4 (lowest 

eigenvalue n.4 of Burden matrix/ weighted by atomic van 

der Waals volumes), 1.176(1) 

2D autocorrelations 

(2D-AUTO): 

MATS7m (Moran autocorrelation - lag 7 / weighted by 

atomic masses), -0.995(7); MATS2p, (Moran 

autocorrelation - lag 2 / weighted by atomic polarizabilities), 

2.877(1) 

Functional groups nNR2 (number of tertiary aliphatic amines), 1.805(4); 

nHDon (number of donor atoms for H-bonds with N and O), 

1.579(2);  

Atom centered fragments (ACF) H-047 (H attached to C1(sp3) / C0(sp2), 1.566(6) 

Empirical Descriptors (EMP) ARR (aromatic ratio), -1.891(2) 

a
The descriptors are identified from the four parameter models for activity emerged from CP-

MLR protocol with filter-1 as 0.79, filter-2 as 2.0, filter-3 as 0.800 and filter-4 as 0.3 ≤ q
2
 

≤1.0 with a training set of 25 compounds. 
b
The average regression coefficient of the 

descriptor corresponding to all models and the total number of its incidence. The arithmetic 

sign of the coefficient represents the actual sign of the regression coefficient in the models.  

The selected models in four descriptors are mentioned below 

pKi= 9.783 –2.051(0.302)Mv –1.447(0.371)IDDE –1.358(0.235)MATS7m  

+1.743(0.454)H-047  

n = 25, r = 0.887, s = 0.327, F = 18.618, Q
2

LOO = 0.677, Q
2

L5O = 0.638 

r
2

Test = 0.655, FIT = 1.816, LOF = 0.185, AIC = 0.160      (2) 

pKi= 6.627 –1.853(0.385)nBM –0.750(0.221)MATS7m +1.580(0.389)nHDon 

+2.993(0.469)H-047  

n = 25, r = 0.873, s = 0.347, F = 16.024, Q
2

LOO = 0.612, Q
2

L5O = 0.527 

r
2

Test = 0.651, FIT = 1.563, LOF = 0.208, AIC = 0.180      (3) 

pKi= 8.321 –0.739(0.360)IDDE –1.591(0.511)CIC3 +2.495(0.416)nNR2 

–1.907(0.325)ARR 

n = 25, r = 0.860, s = 0.362, F = 14.284, Q
2

LOO = 0.582, Q
2

L5O = 0.579 

r
2

Test = 0.609, FIT = 1.393, LOF = 0.227, AIC = 0.196      (4) 

pKi= 8.269 –0.556(0.274)SPI –1.598(0.512)CIC3 +2.058(0.382)nNR2  

–1.874(0.324)ARR 

n = 25, r = 0.859, s = 0.363, F = 14.199, Q
2

LOO = 0.580, Q
2

L5O = 0.688 

r
2

Test = 0.513, FIT = 1.385, LOF = 0.228, AIC = 0.197      (5) 

These models have accounted for nearly 79% variance in the observed activities. The values 

greater than 0.5 of Q
2 

index is in accordance to a reasonable robust QSAR model. The pKi 

values of training set compounds calculated using Eqs. (2) to (5) have been included in Table 
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3. The models (2) to (5) are validated with an external test set of 10 compounds listed in 

Table 1. The predictions of the test set compounds based on external validation are found to 

be satisfactory as reflected in the test set r
2
 (r

2
Test) values and the same is reported in Table 3. 

The plot showing goodness of fit between observed and calculated activities for the training 

and test set compounds is given in Figure 1. 

Table 3: Observed and calculated activities for the CDK4 inhibition. 

a
On molar basis, reference [22]; 

b
Outlier compound in present study; 

c
Compound included in 

test set and 
d
Activity not reported. 

Cpd. 

CDK4 Inhibition pKi(M)
a
 CDK6 Inhibition pKi(M)

a
 

Obs. Calculated Obs. Calculated 

Eq.(2) Eq.(3) Eq.(4) Eq.(5) PLS Eq.(6) Eq.(7)  Eq.(8) Eq.(9) 

1
b
 9.00 -

b
 -

b
 -

b
 -

b
 -

b
 7.47 -

b
 -

b
 -

b
 -

b
 

2 9.00 8.38 8.37 8.82 8.82 8.67 8.10 7.89 8.20 7.66 7.98 

3
c
 8.70 9.14 8.73 8.95 8.80 8.76 8.05 7.89 8.60 7.66 7.98 

4 8.70 9.08 8.71 8.97 8.95 8.70 7.96 7.81 7.79 7.82 7.90 

5 8.22 7.79 7.83 7.76 8.02 8.06 7.03 7.51 7.71 7.15 7.53 

6
c
 8.40 7.95 7.94 8.16 8.21 8.09 7.52 7.06 8.18 7.24 7.65 

7 8.52 8.31 8.57 8.28 8.36 8.81 6.88 7.08 6.95 6.60 7.16 

8 7.15 7.51 7.19 7.70 7.75 7.54 6.59 6.86 6.84 7.07 6.76 

9 8.15 8.18 8.08 8.19 8.26 7.99 7.26 7.28 7.10 7.14 7.44 

10 6.24 6.43 6.44 6.62 6.60 6.00 -
d
 -

d
 -

d
 -

d
 -

d
 

11 8.70 8.75 8.28 8.28 8.14 8.50 8.00 7.89 8.27 7.82 7.69 

12
c
 8.70 8.60 8.54 8.48 8.54 8.51 8.00 7.81 8.12 7.95 7.62 

13 8.00 8.02 7.60 7.70 7.96 8.05 7.51 7.42 7.55 7.38 7.24 

14
c
 7.15 7.27 7.38 7.22 7.23 7.81 6.27 6.90 6.55 6.45 6.75 

15
b
 8.30 -

b
 -

b
 -

b
 -

b
 -

b
 7.18 -

b
 -

b
 -

b
 -

b
 

16 7.72 7.46 7.56 7.46 7.58 7.62 6.31 5.91 6.37 6.41 6.13 

17 7.59 7.75 7.98 7.93 7.77 7.79 7.00 7.19 6.91 7.07 7.13 

18 8.30 7.64 8.34 7.65 7.70 8.20 7.96 8.03 7.61 7.59 7.58 

19
c
 7.80 7.81 8.24 8.30 8.43 8.39 7.55 7.93 7.36 7.69 7.58 

20 8.52 8.56 8.60 8.35 8.28 8.47 7.82 7.93 7.89 7.70 7.58 

21 7.68 7.85 7.70 7.54 7.36 7.65 6.98 7.55 6.94 7.19 7.12 

22 7.39 7.64 7.81 7.71 7.76 7.82 7.09 7.10 7.50 7.29 7.25 

23 8.10 8.29 8.83 8.26 8.42 8.54 8.70 8.60 8.51 8.47 8.37 

24 9.00 8.82 9.03 9.08 8.99 8.63 8.52 8.48 8.43 8.58 8.29 

25 8.40 8.30 8.16 7.99 7.91 7.97 8.22 8.07 7.86 8.28 7.91 

26 8.10 7.84 8.33 8.32 8.48 8.24 7.96 7.68 8.04 8.38 8.37 

27 7.96 8.35 7.99 8.26 8.03 8.05 8.15 8.19 8.06 8.25 8.29 

28 8.22 8.46 8.53 8.30 8.45 8.56 8.05 7.74 7.76 8.13 8.60 

29
c
 8.52 7.84 8.31 8.27 8.36 8.31 7.85 7.91 7.72 8.32 8.60 

30 8.52 8.43 8.28 8.34 8.08 8.42 8.15 8.19 8.32 7.86 7.98 

31
c
 7.85 8.02 8.18 8.64 8.76 8.56 8.00 8.09 7.88 7.87 7.91 

32
c
 9.00 8.72 8.51 8.77 8.72 8.64 8.52 8.09 8.27 7.99 7.91 

33 8.70 8.56 8.49 8.73 8.86 8.55 8.22 8.00 7.76 8.15 7.90 

34
c
 7.47 7.74 7.64 7.72 7.86 7.91 7.64 7.70 7.68 7.64 7.53 

35
c
 8.22 8.43 7.76 8.40 8.14 8.07 7.70 7.26 7.85 7.71 7.58 

36 7.41 7.87 7.86 8.05 7.84 7.61 7.00 7.47 6.79 7.68 7.37 

37 9.00 9.00 8.74 9.02 8.94 8.84 7.51 7.10 7.80 7.29 7.42 
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Figure 1: Plot of observed and calculated pKi values of training- and test-set compounds 

for CDK4 inhibition.   

It is evident from the signs of the regression coefficients that the newly appeared topological 

class descriptors IDDE (mean information content on the distance degree equality) and SPI 

(super pendentic index); 2D-autocorrelation descriptor MATS7m (Moran autocorrelation - 

lag 7 / weighted by atomic masses); and constitutional descriptors Mv (mean atomic volume 

scaled on Carbon atom) and nBM (number of multiple bonds) contributed negatively to the 

activity. Thus lower values of descriptors IDDE, SPI, MATS7m, Mv and nBM would be 

beneficiary to the activity. The other participated descriptors in above models are H-047 from 
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atom centered class and nHDon from functional group. The positive correlation to the activity 

of both of these descriptors advocated that presence of structural fragment H attached to 

C1(sp3)/C0(sp2) (descriptor H-047) and number of donor atoms for H-bonds with N and O 

(descriptor nHDon) would be favorable to the activity.  

A partial least square (PLS) analysis has been carried out on these 20 CP-MLR identified 

descriptors (Table 2) to facilitate the development of a “single window” structure–activity 

model. For the purpose of PLS, the descriptors have been auto scaled (zero mean and unit 

SD) to give each one of them equal weight in the analysis. In the PLS cross-validation, three 

components are found to be the optimum for these 20 descriptors and they explained 85% 

variance in the activity. The MLR-like PLS coefficients of these 20 descriptors are given in 

Table 4. 

Table 4: PLS and MLR-like PLS models from the descriptors of four parameter CP-

MLR models  

A: PLS equation 

PLS components PLS coefficient (s.e.)
a
 

Component-1 -0.233(0.024) 

Component-2 0.127(0.028) 

Component-3 0.127(0.037) 

Constant 8.131 

B: MLR-like PLS equation 

S. No. Descriptor MLR-like coefficient
b
 (fraction contribution)

c
 Order 

1 Ss -0.040 -0.006 18 

2 Mv -0.587 -0.084 4 

3 Mp -0.739 -0.107 1 

4 nBM -0.285 -0.040 12 

5 nCIC 0.149 0.040 13 

6 RBN -0.163 -0.025 15 

7 SPI -0.444 -0.076 5 

8 IDDE -0.171 -0.028 14 

9 IC2 0.297 0.049 11 

10 SIC2 0.033 0.005 19 

11 CIC3 -0.376 -0.049 10 

12 BEHv1 0.798 0.015 17 

13 BEHv3 -0.011 -0.002 20 

14 BELv4 0.495 0.057 8 

15 MATS7m -0.324 -0.063 7 

16 MATS2p 0.366 0.051 9 

17 nNR2 0.621 0.103 3 

18 nHDon 0.809 0.103 2 

19 H-047 0.603 0.074 6 

20 ARR -0.157 -0.024 16 

  Constant 7.530  

C: PLS regression statistics Values  

n 25 

r 0.922 

s 0.267 

F 40.072 
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FIT 3.535 

LOF 0.104 

AIC 0.099 

Q
2

LOO 0.738 

Q
2

L5O 0.823 

r
2

Test 0.507 
a
Regression coefficient of PLS factor and its standard error. 

c
oefficients of MLR-like PLS 

equation in terms of descriptors for their original values; 
c
f.c. is fraction contribution of 

regression coefficient, computed from the normalized regression coefficients obtained from 

the autoscaled (zero mean and unit s.d.) data. 

For the sake of comparison, the plot showing goodness of fit between observed and 

calculated activities (through PLS analysis) for the training and test set compounds is also 

given in Figure 1. Figure 2 shows a plot of the fraction contribution of normalized regression 

coefficients of these descriptors to the activity.  

 

 

Figure 2: Plot of fraction contribution of MLR-like PLS coefficients (normalized) 

against 20 CP-MLR identified descriptors (Table 2) associated with CDK4 inhibitory 

activity of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amines.  

The PLS analysis has suggested Mp (mean atomic polarizability scaled on Carbon atom) as 

the most determining descriptor for modeling the activity of the compounds (descriptor S. 

No. 3 in Table 4; Figure 2). The other nine descriptors in decreasing order of significance are 

nHDon, nNR2, Mv, SPI, H-047, MATS7m, BELv4 (lowest eigenvalue n.4 of Burden matrix/ 

weighted by atomic van der Waals volumes), MATS2p (Moran autocorrelation - lag 2 / 

weighted by atomic polarizabilities) and CIC3. It is also observed that PLS model from the 

data set devoid of CP-MLR identified 20 descriptors (Table 2) is inferior in explaining the 

activity of the analogues. 

S
s 

(1
8

) 

M
v

 (
4

) 

M
p

 (
1

) 

n
B

M
 (

1
2

) 

n
C

IC
 (

1
3

) 

R
B

N
 (

1
5

) 

S
P

I 
(5

) 

ID
D

E
 (

1
4

) 

IC
2

 (
1

1
) 

S
IC

2
 (

1
9

) 

C
IC

3
 (

1
0

) 

B
E

H
v

1
 (

1
7

) 

B
E

H
v

3
 (

2
0

) 

B
E

L
v

4
 (

8
) 

M
A

T
S

7
m

 (
7

) 

M
A

T
S

2
p

 (
9

) 

n
N

R
2

 (
3

) 

n
H

D
o

n
 (

2
) 

H
-0

4
7

) 
(6

) 

A
R

R
 (

1
6

) 

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

F
ra

ct
io

n
 c

o
n

tr
ib

u
ti

o
n

 

http://www.bjmhr.com/


 

www.bjmhr.com 41 

Sharma et. al., Br J Med Health Res. 2022;9(10) ISSN: 2394-2967 

CP-MLR analysis has also been carried out for another reported inhibition activity CDK6 

using the same test set. Following are the selected (from the 66 models, sharing 51 

descriptors) highly significant four-descriptor models for the CDK6 inhibitory activities 

emerged through CP-MLR.  

pKi= 6.503 +0.976(0.202)AMW –3.135(0.375)nBM +2.051(0.380)nN 

–1.631(0.403)C-008 

n = 24, r = 0.910, s = 0.292, F = 23.063, Q
2

LOO = 0.575, Q
2

L5O = 0.602 

r
2

Test = 0.617, FIT = 2.306, LOF = 0.151, AIC = 0.130      (6) 

pKi= 5.272 +3.245(0.398)nCIC –32.175(4.165)BEHv1+3.609(0.540)MATS2p 

+0.800(0.155)nNHR 

n = 24, r = 0.910, s = 0.292, F = 22.926, Q
2

LOO = 0.793, Q
2

L5O = 0.775  

r
2

Test = 0.688, FIT = 2.292, LOF = 0.152, AIC = 0.130     (7) 

 

pKi= 5.312 +1.518(0.229)GATS7e +2.546(0.509)C-005 +6.261(0.874)C-006  

–5.799(1.011)H-047  

n = 24, r = 0.905, s = 0.300, F = 21.551, Q
2

LOO = 0.702, Q
2

L5O = 0.694  

r
2

Test = 0.747, FIT = 2.155, LOF = 0.160, AIC = 0.137      (8) 

pKi= 7.705 –1.600(0.356)Mp –8.256(2.917)BEHv1 –1.537(0.308)C-001  

+2.244(0.467)C-006  

n = 24, r = 0.894, s = 0.315, F = 19.054, Q
2

LOO = 0.635, Q
2

L5O = 0.658  

r
2

Test = 0.568, FIT = 1.905, LOF = 0.177, AIC = 0.152      (9) 

The descriptors participated in above models are from constitutional class (AMW, Mp, nN, 

nBM and nCIC) and atom centered class (H-047, C-001, C-005, C-006 and C-008). Among 

the constitutional class descriptors, AMW (average molecular weight), nN (number of 

nitrogen atoms) and nCIC (number of rings) have shown positive and descriptors Mp (mean 

atomic polarizability scaled on Carbon atom) and nBM (number of multiple bonds) negative 

correlation to the CDK6 activity. Thus a higher value of descriptors AMW, nN and nCIC, 

and a lower value of descriptors Mp and nBM would be beneficial to the activity. Atom 

centered descriptors C-005 and C-006 contributed positively and descriptors H-047, C-001 

and C-008 negatively to the activity advocating that presence of CH3X (descriptor C-005) 

and CH2RX (descriptor C-006), and absence of H attached to C1(sp3)/C0(sp2) (descriptor H-

047), CH3R/CH4 (descriptor C-001) and CHR2X (descriptor C-008) type atom centered 

fragments in a molecular structure would be favorable to the activity. On the similar ground, 

a lower value of BCUT class descriptor BEHv1 (highest eigenvalue n.1 of Burden matrix/ 

weighted by atomic van der Waals volumes), higher values of 2D-autocorrelation descriptors 

MATS2p (Moran autocorrelation - lag 2 / weighted by atomic polarizabilities) and GATS7e 
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(Geary autocorrelation of –lag7 weighted by atomic Sandersons electro negativities), and 

presence of secondary aliphatic amine functionality (descriptor nNHR, a functional group 

class descriptor) in a molecular structure will augment the inhibition activity. 

These models have accounted for nearly 83% variance in the observed activities. The values 

greater than 0.5 of Q
2 

index is in accordance to a reasonable robust QSAR model. The pKi 

values of training set compounds calculated using Eqs. (6) to (9) have been included in Table 

3. The models (6) to (9) are validated with an external test set of 10 compounds listed in 

Table 1. The predictions of the test set compounds based on external validation are found to 

be satisfactory as reflected in the test set r
2
 (r

2
Test) values and the same is reported in Table 3. 

The plot showing goodness of fit between observed and calculated activities for the training 

and test set compounds is given in Figure 3. 

 

 

Figure 3: Plot of observed and calculated pKi values of training- and test-set compounds 

for CDK6 inhibition.   

Applicability domain 

On analyzing the applicability domain (AD) for the CDK4 inhibitory actions in the Williams 

plot (Figure 4) of the model based on the whole data set (Table 5), no any compound has 

been identified as an obvious ‘outlier’ for the CDK4 inhibitory activity if the limit of normal 

values for the Y outliers (response outliers) was set as 3×(standard deviation) units. None of 
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the compound was found to have leverage (h) values greater than the threshold leverage (h*). 

For both the training-set and test-set, the suggested model matches the high quality 

parameters with good fitting power and the capability of assessing external data. 

Furthermore, all of the compounds were within the applicability domain of the proposed 

model and were evaluated correctly. 

Table 5: Models derived for the whole data set (n = 35) in descriptors identified through 

CP-MLR.  

Model r s F Q
2

LOO Eq. 

pKi= 9.621 – 2.002(0.281)Mv –1.256(0.300)IDDE  

–1.266(0.176)MATS7m +1.707(0.392)H-047 
0.872 0.325 23.920 0.687 (2a) 

pKi= 6.820 –2.012(0.334)nBM–

0.844(0.163)MATS7m +1.293(0.336)nHDon 

+3.002(0.404)H-047  

0.864 0.335 22.136 0.629 (3a) 

pKi= 8.100 –0.756(0.284)IDDE –1.278(0.281)CIC3 

+2.491(0.317)nNR2 -1.774(0.301)ARR 
0.853 0.347 20.047 0.625 (4a) 

pKi= 8.269 –0.556(0.274)SPI –1.598(0.512)CIC3 

+2.058(0.382)nNR2 -1.874(0.324)ARR 
0.840 0.361 18.056 0.592 (5a) 
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Figure 4: Williams plot for the training- and test- set compounds. The horizontal dotted 

line refers to the residual limit (±3×standard deviation) and the vertical dotted line 

represents threshold leverage h* (= 0.6). 

CONCLUSION 

The CDK4 and CDK6 inhibition activity of 4-Thiazol-N-(pyridin-2-yl)pyrimidin-2-amines 

have been quantitatively analyzed in terms of Dragon descriptors. The statistically validated 

quantitative structure-activity relationship (QSAR) models provided rationales to explain the 

inhibition activities of these congeners. The descriptors identified through combinatorial 

protocol in multiple linear regression (CP-MLR) analysis for the CDK4 inhibitory activity 

have highlighted the role of complimentary information content of 3
rd

 order neighborhood 

symmetry (CIC3), mean information content on the distance degree equality (IDDE) and 

super pendentic index (SPI) to rationalize the activity. Atomic properties such as atomic van 

der Waals volumes and polarizabilities in terms of Mv, and Moran autocorrelation 

(MATS7m) in addition to the aromatic ration (ARR) number of multiple bonds (nBM), 

tertiary aliphatic amines (nNR2) and number of donor atoms for H-bonds with N and O 

(nHDon) functionality, and structural fragment H attached to C1(sp3)/C0(sp2) (H-047) have 

also shown prevalence to model the CDK4 inhibitory activity. PLS analysis has also 

corroborated the dominance of CP-MLR identified descriptors. Applicability domain analysis 

revealed that the suggested model matches the high quality parameters with good fitting 

power and the capability of assessing external data and all of the compounds was within the 

applicability domain of the proposed model and were evaluated correctly. 

The derived QSAR models for the CDK6 inhibitory activity have revealed that the average 

molecular weight (descriptor AMW), mean atomic polarizability scaled on Carbon atom 

(descriptor Mp), number of multiple bonds (nBM), number of nitrogen atoms (nN), number 

of rings (nCIC), number of secondary aliphatic amines (nNHR),highest eigenvalue n.1 of 

Burden matrix/ weighted by atomic van der Waals volumes (BEHv1), Moran autocorrelation 

- lag 2 / weighted by atomic polarizabilities (MATS2p) and Geary autocorrelation of - lag 7/ 

weighted by atomic Sandersons electronegativities (GATS7e) played a pivotal role in 

rationalization of CDK6 inhibition activity of titled compounds. Additionally, absence of 

attached to C1(sp3)/C0(sp2) (H-047), CH3R/CH4 (C-001) and CHR2X (C-008), and 

presence of CH3X (C-005) and CH2RX (C-006) type structural fragment in a molecular 

structure are also predominant to explain CDK6 inhibition actions of 4-Thiazol-N-(pyridin-2-

yl)pyrimidin-2-amines.  
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